

Prevalence of multi-drug resistant Acinetobacterbaumannii in intensive care units of a tertiary care hospital in western odisha.

Mohanty S, Padhan KPC, Behera SK

Department of Microbiology, VSS Institute of Medical Sciences and Research, Burla, Odisha, India.

Date of Submission: 1-11-2020	Date of Acceptance: 15-11-2020

ABSTRACT; Background: In the hospital environment, Acineto bacterbaumannii (A. baumannii) commonly colonizes the respiratory, urinary, and wounds of the patientscauses infections inmechanically ventilated and immune compromised patients. It shows a special predilection for the ICU patients. Hence, the purpose of this study was to find out the prevalence of multi-drug resistant A.baumannii in all clinical samples from intensive care units of a tertiary care hospital in western Odisha.

Methods: All clinical samples were collected aseptically, cultured and identified adhering to standard microbiological protocols. Antibiotic sensitivity test was done by Kirby-Bauer disk diffusion method according to CLSI guidelines.

Results: During the one year study period from Nov 2019 to Oct 2020, a total of 1181 clinical samples from intensive care units were studied, out of which 54 Acinetobacterbaumannii isolates were obtained. Most isolates were from pus samples followed by respiratory tract samples. Out of the 54 isolates, 40 (74%) were multi-drug resistant. Maximum percentage of MDR isolates were among the respiratory tract samples i.e. 90.9% followed by pus samples i.e. 81.8%. High rate of drug resistance to gentamycin (85.1%) followed by ciprofloxacin (81.4%), ceftazidime (79.6%) and piperacillintazobactam (77.7%) was seen in the present study. However, it showed highest sensitivity of about 90.75% to Imipenem.

Conclusion: Multi-drug resistant Acinetobacterbaumannii presents a grave challenge for the clinicians as it has a negative impact on clinical outcomes among ICU patients. There is need of strategies to counter its emergence. Hence, judicious use of antibiotics, efficient infection control program and antimicrobial stewardship can certainly help to counter the emergence of this organism in the ICU setting.

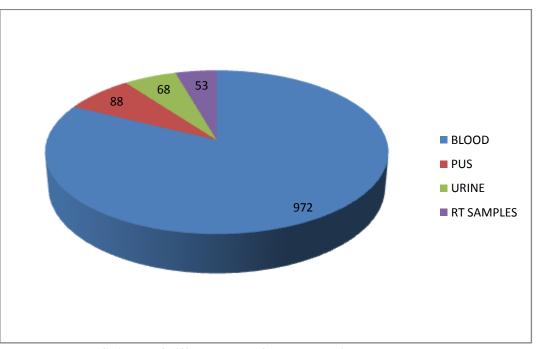
Keywords: Acinetobacterbaumannii, multi-drug resistant, intensive care units, Imipenem

I. INTRODUCTION

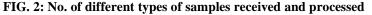
Members of the genus Acinetobacter have emerged from organisms of questionable pathogenicity to resistant health-care associated pathogens worldwide in the past two or three decades.¹Acinetobacterbaumannii is an ubiquitous, oxidase-negative and strictly aerobic gram-negative coccobacillary rod that grows at 20 to 30°C on usual laboratory media.^{2,3}It can colonize the respiratory tract, urinary tract and wounds of mechanically ventilated and immunocompromised patients in the ICU setting.⁴Hence, A.baumannii usually contributes to respiratory tract, urinary tract, blood stream and surgical site infections. The major problems encountered are the organism's virulence factors, its ability to acquire various mechanisms of resistance and the emergence of strains that are resistant to all commercially available antimicrobials coupled with the lack of new antimicrobial agents.⁵Until the 1970's, A.baumanniiwas considered to be an uncommon etiological agent of health-care associated infections in the intensive care unit (ICU).⁶In recent years, however, the incidence of Acinetobacter infections have increased dramatically and pose a serious threat to ICU patients around the globe.⁷This organism is responsible for 2–10% of gram-negative bacterial infections in ICUs in Europe and the United States.⁸ There are reports of A.baumannii infection rate in Indian ICU's of 12-41%.^{9,10}In this study, we decided to determine prevalence of multi-drug resistant A. baumanniiin all the clinical samples obtained from ICU patients in a tertiary care hospital of western odisha.

II. MATERIALS AND METHODS

The present study was carried out in the Department of Microbiologyof a tertiary care hospital in western Odisha. In the study period (Nov 2019- Oct 2020) 1181 samples from patients in various ICUs of the hospital were processed and evaluated during the course of routine diagnostic work. The ICUs included in the study were


categorized as SNCU, NICU, PICU and other ICU. The samples were processed as per standard microbiological protocols for bacteriological culture and identification. The samples received and processed immediately were blood, pus, urine and respiratory tract samples. All suspected colonies were identified by Gram-staining, colonial morphology, oxidase test and other biochemical reactions.^{11,12,13}The bacterial isolates were then subjected to antibiotic susceptibility testing by standard Kirby Bauer Disc Diffusion method according to latest CLSI guidelines.14 Zone diameter was measured in mm, interpreted as per CLSI guidelines too.¹⁵The entire testing was done under strict internal quality control using the American type culture collection (ATCC) strains.

III. RESULTS


A total of 1181 clinical samples from ICU patients of our hospital were processed and evaluated. Out of these samples, 428 were obtained

from SNCU, 424 from NICU, 64 from PICU and 265 from other ICU. Among the samples 972 were blood samples, 88 pus samples, 68 urine samples respiratory tract and 53 samples. 54 Acinetobacterbaumanniiisolates were obtained from all the clinical samples processed of which, 22 were isolated from pus samples, 11 each from respiratory tract and urine samples and 10 from blood samples. Out of the 54 Acinetobacter isolates 40 (74%) were multidrug resistant. Among the samples, 90.9% MDR isolates were obtained from respiratory tract samples followed by 81.8% from pus samples, 80% from blood samples and 36.4% from urine samples. The antibiotic sensitivity profile of the A.baumannii isolates showed 85.1% resistance to gentamycin, 81.4% to ciprofloxacin, 79.6% to ceftazidime, 77.7% to piperacillintazobactam and 75.9% to ceftriaxone. However, the organism was least resistant to Imipenem i.e. 9.25%.

Tables and charts		
TYPE OF ICU	NO. OF SAMPLES	
SNCU	428	
NICU	424	
PICU	64	
OTHER ICU	265	

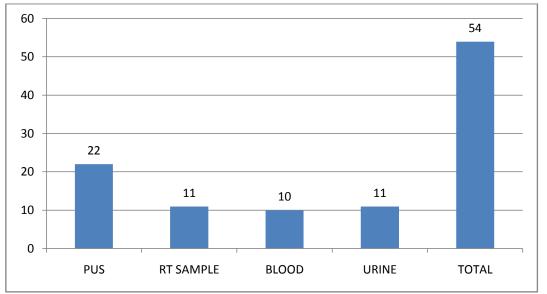


FIG. 3: No. of Acinetobacterbaumannii isolated from different clinical samples

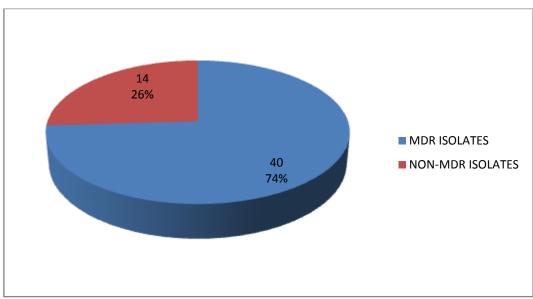
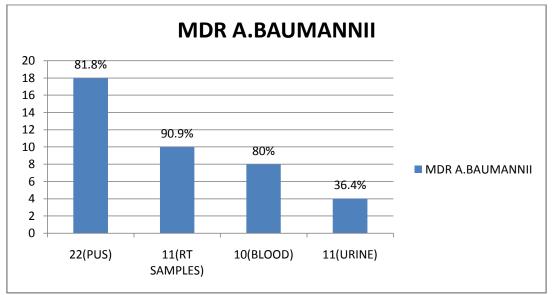



FIG. 4: No. and percentage of MDR A. baumannii isolated

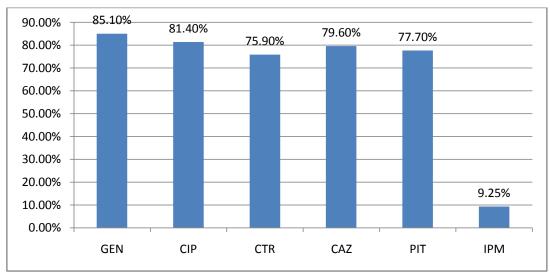


FIG. 5: Percentage of MDR A. baumannii isolated from different clinical samples

FIG. 6: Percentage of resistance of A. baumannii to different antibiotics

IV. DISCUSSION

The isolation rate of Acinetobacterbaumannii from ICUs of our set up was found to be 4.6% which is lower to 10% as reported by A.S. Mathai et al.¹⁶ In our study maximum number of A.baumanni were isolated from pus samples (25%) and respiratory tract samples (20.75%) respectively as compared to a study conducted by Kanafani et al which showed maximum isolates from respiratory tract samples samples (18.8%)(53.1%)and pus respectively.¹⁷This result corroborates the fact that a with lot of risk factors associated Acinetobacterinfection in the ICU is because the

heath care environment is a reservoir for this organism and isresponsible for cross- transmission and considerable morbidity and mortality. Other than the patients with comorbidities who are colonized, factors like patients with multiple wounds and devices implanted in them, inadvertent use of broad spectrum antibiotics and frequent contamination by the hands of health care workers while caring for the patients play a role for spreading the Acinetobacter infection in the ICU.^{18,19,20}Our study revealed a multidrug resistance rate of 74% which is very similar to a study done by A.S. mathai et al which showed 70% MDR rate.High drug resistance to gentamicin,

ciprofloxacin, piperacillin-tazobactam and ceftazidime seen in the current study is almost similar to a study done by Shrivastavaet al.²¹The susceptibility rate of A.baumannii to Imipenem in the present study was found to be 90% which is very similar to a study done by Rahbar et al which showed 95.5% susceptibility rate.²²

V. CONCLUSION

We conclude that there is a significant prevalence of MDR Acinetobacterbaumannii in the ICU. MDR A.baumanniiinfection presents a serious challenge for the clinicians in the treatment of ICU patients. Injudicious use of antibiotics, longer duration of ICU stay and mechanical ventilation are the major risk factors for emergence of drug resistance in A.baumannii. Hence, judicious use of antibiotics, efficient infection control program and antimicrobial stewardship may surely help curb its emergence.

VI. ACKNOWLEDGEMENT

The authors express their deep gratitude tothe Professor and HOD department of microbiologyof the institute for providing laboratory facilities and healthy working atmosphere during the study period. The authors are also thankful to the technical staff of the institute for providing necessary helping hand during the endeavour.

REFERENCES

- Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med 2008;358:1271-81.
- [2]. Hall GS. Non-fermenting and miscellaneous gram-negative bacilli. In: Mahon CR, Lehman DC, Manuselis G, editors. Textbook of Diagnostic Microbiology. 3rd ed. Philadelphia: WB Saunders; 2007. p. 564-85.
- [3]. Montefour K, Frieden J, Hurst S, Helmich C, Headley D, Martin M, Boyle DA. Acinetobacterbaumannii: An emerging multidrug-resistant pathogen in critical care. Crit Care Nurse 2008;28:15-25.
- [4]. Towner KJ. Acinetobacter: An old friend, but a new enemy. J Hosp Infect 2009;73:355-63.
- [5]. Lolans K, Rice TW, Munoz-Price LS, Quinn JP. Multicity outbreak of carbapenem-resistant Acinetobacterbaumannii isolates producing

the carbapenemase OXA-40. Antimicrob Agents Chemother 2006;50:2941-5.

- [6]. Villers D, Espaze E, Coste-Burel M, Giauffret F, Ninin E, Nicolas F, et al. Nosocomial Acinetobacterbaumannii infections: Microbiological and clinical epidemiology. Ann Intern Med 1998;129:182-9.
- [7]. Afzal-Shah M, Livermore DM. Worldwide emergence of carbapenem-resistant Acinetobacter spp. 1998. J AntimicrobChemother 1998;41:576-7.
- [8]. Richet H, Fournier PE. Nosocomial infections caused by Acinetobacterbaumannii: A major threat worldwide. Infect Control HospEpidemiol 2006;27:645-6.
- [9]. Agarwal R, Gupta D, Ray P, Aggarwal AN, Jindal SK. Epidemiology, risk factors and outcome of nosocomial infections in a Respiratory Intensive Care Unit in North India. J Infect 2006;53:98—105.
- [10]. Prashanth K, Bhadrinath S. Nosocomial infections due to Acinetobacter species: clinical findings, risks and prognostic factors. Indian J Med Microbiol 2006;24:39-44.
- [11]. Forbes BA, Sahm DF, Weissfeld AS, editors. Bailey and Scott's diagnostic microbiology. 12th ed. Bacterial Identification flow charts and schemes: A Guide to Part III. Missouri: Mosby Elsevier; 2007. p. 251-3.
- [12]. Cheesbrough M. Medical Laboratories manual for tropical countries. Tropical Health Technology. London: Butterworth; 2002. p. 479.
- [13]. Forbes BA, Sahm DF, Weissfeld AS, editors. Bailey and Scott's Diagnostic Microbiology, 10th ed. St. Louis: MO, Mosby; 1998.
- [14]. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disc method. Am J ClinPathol 1966;45:493-6.
- [15]. CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests.27th ed. CLSI standard M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.
- [16]. Mathai AS, Oberoi A, Madhavan S, Kaur P. Acinetobacter infections in a tertiary level intensive care unit in northern India:

ISSN: 2249-7781

epidemiology, clinical profiles and outcomes. J Infect Public Health 2012;5:145-52.

- [17]. Kanafani ZA, Zahreddine N, Tayyar R, et al. Multi-drug resistant Acinetobacter species: a seven-year experience from a tertiary care center in Lebanon. Antimicrob Resist Infect Control 2018; 7:9.
- P, [18]. Jaggi N, Sissodia Sharma L. baumannii Acinetobacter isolates: Epidemiology, antibiogram and nosocomial status studied over a 25 month period in a tertiary care hospital in India. Proceedings of the International Conference on20. Prevention and Infection Control, Jun. 29-Jul. 2, Geneva; 2011.
- [19]. Uma Karthika R, SrinivasaRao R, Sahoo S, Shashikala P, Kanungo R, Jayachandran S, et al., Phenotypic and genotypic assays for detecting the prevalence of metallo-beta-21. lactamases in clinical isolates of Acineto bacterbaumannii from a South Indian tertiary care hospital. J Med Microbiol 2009;58:430-5.
- [20]. Sinha M, Srinivasa H, Macaden R. Antibiotic resistance profile and Extended Spectrum Beta-Lactamase (ESBL) production in Acinetobacter species. Indian J Med Res 2007:63-7.
- [21]. Shrivastava G, Bhatambare GS, Bajpai T, Patel KB. Sensitivity profile of multidrug resistant Acinetobacter Spp. isolated at ICUs of tertiary care hospital. Int J Health Syst Disaster Manage 2013;1:200-3.
- [22]. Rahbar M, Mehrgan H, Aliakbari NH. Prevalence of antibiotic-resistant Acineto bacter baumannii in a 1000-bed tertiary care hospital in Tehran, Iran.Indian J Pathol Microbiol. 2010;53(2):290–3.